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Abstract

High-resolution precipitation data is crucial for modern hydrological and building hygrothermal performance sim-
ulation models. In Australia, historical observations are inadequate, as half-hourly recordings only replaced daily
observations at many stations from the early 2000s. Moreover, existing machine learning approaches are limited to
generating hourly time series data. This paper presents a recurrent neural network using long short-term memory to
disaggregate daily precipitation observations into half-hourly intervals. The model leverages temporal dependencies
and hourly weather measurements. Our results, based on stations across five Australian climate zones, demonstrate
that the model effectively preserves key half-hourly precipitation statistics, including variance and the quantity and
distribution of wet half-hours. When aggregated to hourly intervals, our model outperforms other models in most
metrics.

Keywords: Half-hourly precipitation, temporal disaggregation, stochastic precipitation generation, long short-term
memory, neural networks, machine learning

1. Introduction

Building simulation and modelling software is increasingly used to optimize design parameters for energy effi-
ciency and to predict performance of a building’s systems under various conditions (de Wilde, 2023). Meaningful
weather and climate data forms an essential component of these systems, as well as other systems like hydrological
models (Horton et al., 2022). In order to define a climate normal, the World Meterological Organization recommends
using at least thirty years of historical data (WMO, 2023, p.25). Especially in the case of precipitation, shorter periods
may not produce reliable statistics due to annual variances.

However, thirty years of high-resolution precipitation data suitable for these applications is not always available.
In the Australian context, for instance, half-hourly precipitation readings are often only available since the late 1990s
and early 2000s, when the Bureau of Meteorology (BoM) installed automatic Tipping Bucket Rain Gauges (Australian
Bureau of Meteorology, 2010). Prior to this, precipitation data was primarily collected through daily manual readings
of the rain gauge by post office staff or volunteers at 0900 local time. As hourly or sub-hourly data is essential for reli-
able built environment modelling (Brigandı̀ and Aronica, 2019), there is a clear need for precipitation disaggregation
algorithms that can produce this data. This paper’s key contribution is a novel method for producing half-hourly pre-
cipitation data from daily precipitation totals and correlated hourly weather statistics. To our knowledge, it is the first
method to temporally disaggregate daily precipitation to half-hourly intervals, and the first to apply long short-term
memory (LSTM) networks to the precipitation disaggregation problem.

A key benefit of generating half-hourly precipitation instead of hourly precipitation is that it enables consistency
between different file formats. For instance, the EnergyPlus Weather (EPW) format used in the building energy
simulation program EnergyPlus (US Department of Energy, 2024), and the Australian Climate Data Bank (ACDB)
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format used by the Nationwide House Energy Rating Scheme (NatHERS) software (Tan et al., 2023) use different
timestamp conventions. Both file types use hourly data, but their timestamp conventions differ by half an hour. EPW
records the hour before the timestamp, while ACDB records the hour centred on the timestamp. This difference is
neatly illustrated in Figure 1. Half-hourly precipitation can be re-aggregated to accommodate this difference.

Clock Time
10:00 11:00 12:00 13:00 14:00 15:00

Clock Half-hours

10:00 11:00 12:00 13:00 14:00 EPW format

11:00 12:00 13:00 14:00 ACDB format

Figure 1: Timestamp conventions for ACDB and EPW formats

Disaggregation, like downscaling, is the process of producing high-resolution data that is statistically consistent
with the original, coarser-scale data ((Koutsoyiannis, 2003)). While similar to downscaling, disaggregation has the
additional requirement that the sum of the disaggregated values should closely match the total from the original,
coarser-resolution data (Knoesen and Smithers, 2009). Stochastic approaches to this problem have previously been
favoured, however, these approaches have been found to show some disagreement with recorded measurements and
require a large number of parameters for modelling (Ferrari et al., 2022). Another pertinent concern is computational
efficiency. Stochastic methods, such as Markov chain Monte Carlo, often require significant resources and time
to converge. Moreover, calculating the time to convergence for these methods cannot be done in polynomial time
(Bhatnagar et al., 2011). This increased computational burden not only raises infrastructure costs but also limits the
practicality of these algorithms.

Given these drawbacks, many researchers have turned to machine learning techniques, particularly neural net-
works, for precipitation disaggregation. Early work by Burian et al. (2001) investigated the use of feed-forward
neural networks to disaggregate hourly data into 15-min intervals. Building on this approach, Bhattacharyya and Saha
(2022) extended the application of feed-forward networks to perform daily-to-hourly disaggregation. Their model
disaggregated precipitation for day t by inputting the daily totals of days t and t − 1, along with the day, month, and
a category label. This label was derived from k-means clustering (k = 4) on the daily totals of days t, t − 1 and t + 1.
However, the model did not include meteorological variables which are known to be associated with the onset of
precipitation, such as atmospheric pressure or humidity (Hintz et al., 2019).

While not directly addressing disaggregation, the work of Misra et al. (2017) on precipitation downscaling using
long short-term memory (LSTM) networks opened new avenues for research. Their success in downscaling precipi-
tation from climatic variables generated by general circulation models suggests that similar recurrent neural network
architectures could be effective for disaggregation tasks. This approach’s ability to capture temporal dependencies in
sequential data makes it particularly promising for precipitation modelling. Inspired by this prior work, we implement
a neural network with LSTM layers for sub-hourly disaggregation using PyTorch (Paszke et al., 2019), extending the
application of these models to finer temporal resolutions.

For our study, we exploit historical weather data for several Australian cities, where hourly weather data and
half-hourly precipitation data is available since at least 2001. We show that our approach preserves key statistical
metrics from the observed time series, and performs favourably compared to other disaggregation approaches. The
rest of this paper is organized as follows. Section 2 introduces the stations under study and describes the data utilized
by the model, followed by a detailed explanation of the model architecture and implementation specifics. Section 3
presents the model’s results and provides a comprehensive analysis of its performance across various metrics. Finally,
Section 4 summarizes the model’s performance, its implications, and outlines directions for future research.

2. Methodology and Data

2.1. Areas of study
Our investigation utilizes data from five stations across Australia. Table 1 presents these stations, their locations

and their respective climate zones as defined by the Australian Building Codes Board (2024). The table also indicates
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Table 1: Stations used in the study

Location WMO Index Station Coordinates Climate Zone Half-hourly Record Start

Cairns (CN) 94287 -16.87, 145.75 Climate Zone 1 2001-09
Brisbane (BR) 94578 -27.39, 153.13 Climate Zone 2 2000-03
Sydney (SY) 94768 -33.86, 151.20 Climate Zone 5 1998-12
Melbourne (ME) 94868 -37.83, 144.98 Climate Zone 6 1997-10
Canberra (CA) 94926 -35.30, 149.20 Climate Zone 7 2000-04

the year and month when a tipping bucket rain gauge was installed at each station, marking the onset of half-hourly
precipitation data availability. For all stations, the data series continues through the end of 2022.

2.2. Data Preprocessing and variable selection

Hourly meteorological data (excluding precipitation) for each station is provided in the TMY2 format. After
parsing, any missing values are forward-filled. The hourly meteorological data is then linearly interpolated to half-
hourly intervals and inner joined with the station’s precipitation data. Datetimes with missing precipitation values are
excluded from the join.

While Cairns’ and Brisbane’s data required no temporal adjustment, the other locations’ daily precipitation mea-
surements needed to be aligned to account for daylight saving time. These locations undergo biannual one-hour
shifts, requiring temporal alignment between the daily precipitation readings and other meteorological elements, as
the half-hourly precipitation data is consistently recorded in Australian Eastern Standard Time.

To train and test the model, we split the data into three sets. We test the model on all data from 2020 - 2022, use
2018 and 2019 as the validation set to evaluate the model during training, and train the model on all remaining data.
This results in a train-test-validation split of roughly 75%-10%-15%. The training dataset was shuffled to allow the
model to learn from a more representative sample in each batch.

We selected station atmospheric pressure, dry bulb and dew point temperatures, and relative humidity as the
model’s input features based on both the reliability of these measurements and their Pearson correlation to precipita-
tion in the Sydney dataset.

While cloud cover has a strong correlation with precipitation (Mishra, 2019), we excluded it from our feature set.
In the early years of BoM datasets, cloud cover data is often only available as a derivative of insolation. This results
in unreliable linear interpolations between pre-dusk and post-dawn values for nighttime hours.

The selected features were standardized by centering (subtracting the mean) and scaling to unit variance. The
preprocessed data was then loaded into a PyTorch Dataset class, where it was grouped by day starting from 0900
and processed into three tensors: an input sequence tensor, a target tensor, and a daily total tensor.

2.3. Model Architecture & Implementation

Feed-forward neural networks are limited to providing a static mapping between input and output, and hence
cannot represent context. Context, however, is an important component of time-prediction tasks such as precipitation
disaggregation, where each timestep is impacted by preceding timesteps.

In order to model context, signals from previous timesteps can be fed back into the network, with such models
known as Recurrent Neural Networks, or RNNs (Staudemeyer and Morris, 2019). Theoretically, RNNs should be able
to preserve long-term dependencies at an arbitrary timeframe, however, RNNs suffer from problems such as vanishing
gradients, which can slow or stop training of the network completely (Pascanu et al., 2013). One such solution that
addresses the vanishing gradient problem is long short-term memory (LSTM). An LSTM consists of a memory cell
with three gates: an input gate, an output gate, and a forget gate, which together control the flow of information into
and out of the cell (Gers et al., 2000).

The basic architecture of our model can be seen in Figure 2. On a high level, the model processes input sequences
of 48 time steps through two successive LSTM layers of 62 units each, before the daily total constraint is enforced by
the normalization layer.
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Figure 2: Model architecture

To understand how the data is transformed, we now walk through the network layer by layer. Let b represent
the batch size of the input. Then, the input is of size (b, 48, 4): b sequences of 48 half-hours, each having 4 input
features. This is passed through two LSTM layers, each with 62 units to capture both short-term and long-term
temporal dependencies, outputting a tensor of size (b, 48, 62). A fully connected layer transforms this tensor into a
single output for each entry in the sequence. This results in a tensor of size (b, 48, 1). A rectified linear unit (ReLU)
activation function (Agarap, 2019), defined by

f (x) = max(0, x)

acts upon each prediction and ensures outputs are non-negative (as precipitation cannot be negative) before the sin-
gleton dimension is removed by a squeeze operation. The resulting tensor, alongside a tensor (b, 1) of daily totals, are
input into the normalization layer, which scales each day’s predictions to ensure they sum to the known daily total.
The final tensor of size (b, 48) contains the half-hourly predictions for each day contained in the batch, effectively
disaggregating the daily totals into a plausible sub-daily distribution.

The normalization layer is a novel addition to our network in the context of disaggregation. Its primary purpose
is to ensure that the predicted half-hourly precipitation values sum exactly to the known daily total, maintaining
consistency between our model’s output and the observed sequence. For each daily sequence vector x⃗ and daily total
t, we define the layer in the following way:

F(x⃗, t) =
{

0⃗, for t < ε
t · ((
∑48

i=1 x⃗i) + ε)−1 x⃗ otherwise

}
where ε > 0 is a small constant to ensure the function is differentiable across its domain, which is crucial for back-
propagation during network training, and to account for floating point error. We set ε = 10−8 in our experiments,
though this choice was largely arbitrary. The specific value of ε has minimal impact on the results as long as it is
small enough to maintain numerical stability while preserving the intended behaviour of the normalization.

We now construct our loss function, which the network will try to minimize. Let p, q ∈ R48 be the predicted and
target vectors respectively. We define the loss function ℓ as

ℓ(p, q) = MSE(p, q) + KL(σ(p), σ(q)) + |V(p) − V(q)| (1)
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Where

MSE(p, q) =
1

48

48∑
i=1

(pi − qi)2 (2)

KL(σ(p), σ(q)) =
48∑
i=1

σ(p)i log
σ(p)i

σ(q)i
(3)

σ(z)i =
ezi∑48

j=1 ez j
, with σ : R48 → (0, 1)48 (4)

V(z) =
1

48

48∑
i=1

(zi − µ)2, with µ =
48∑
i=1

zi

48
(5)

As shown in Equation 1, our loss function combines three main components. Equation 2 measures the mean squared
error between the elements of p and q, providing a measure of overall prediction accuracy. Equation 3 defines
Kullback-Liebler divergence (Kullback and Leibler, 1951), which measures the dissimilarity between the probability
distributions obtained from p and q using the softmax function σ (Goodfellow et al., 2016). This component is
particularly useful for assessing differences in the distribution of rainfall throughout a day. The final term, |V(p)−V(q)|,
computes the absolute difference between the variances of p and q (Equation 5). This component aims to ensure that
the prediction retains the statistical characteristics of the target vector, particularly the frequency and intensity of
extreme values.

This loss function is minimized by the optimization algorithm Adam (Kingma and Ba, 2014). To reduce training
times and increase learning stability, we use batch normalization (Ioffe and Szegedy, 2015) with a batch size of 32.
The model is implemented in PyTorch (Paszke et al., 2019), with data preprocessing done using pandas (McKinney,
2010) and scikit-learn (Pedregosa et al., 2011). All training and inference was performed on a single Nvidia 4070 Ti
Super GPU. We train a new model for each location to account for local climate characteristics.

The validation dataset is used to select the optimal model weights. At the end of each epoch, we compare the
epoch’s validation loss to the best validation loss achieved so far. If epoch validation loss is lower, the current model
state is saved and the best validation loss variable is updated accordingly. The model saved at the conclusion of
this process was then used for our final evaluations. This approach ensures that we select the model with the best
generalization performance on unseen data, helping to mitigate overfitting to the training set.

To fine-tune the model, we use a learning rate scheduler with a reduction on plateau strategy. Additionally, after
an initial training run of 140 epochs, the saved model state is re-loaded and trained with a fixed learning rate of 5 ·10−6

for a further 50 epochs. Each epoch takes about 2.8 seconds to run, with the entire training and testing pipeline taking
just over nine minutes to complete per location.

A summary of all hyperparameters used in the model’s architecture and training can be seen in Table 2.

Table 2: Model and training hyperparameters

Hyperparameter Value

LSTM hidden layer size 64
LSTM layer count 2
LSTM output size 1
Batch size 32
Epochs 140 initial + 50 for fine-tuning
Learning rate 10−3 initial / 5 · 10−6 fine-tuning
Scheduler patience 6
Scheduler factor 0.68
Scheduler minimum learning rate 10−6

Dropout 0.24
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3. Results and Discussion

Performance evaluation of the model is done by comparing the generated series with the observed series with
regards to the following metrics on the test dataset:

• Temporal mean and variance

• Root mean squared error and normalized mean squared error

• Number of precipitation half-hours

• Proportion of correctly detected precipitation half-hours

• Skill score

• Pearson product-moment correlation coefficient

We first present results for the base architecture consisting of two LSTM layers with 62 memory cells in each layer,
before considering the performance of architecture variations. Figures 3 and 4 show comparisons of the precipitation
sequences generated by the model and from the observed data at half-hourly and re-aggregated hourly resolution
respectively.

Figure 3: Predicted vs observed half-hourly time series for Brisbane

6



Figure 4: Predicted vs observed hourly time series for Brisbane

3.1. Comparison of statistical characteristics
Means and variance of the observed precipitation for each location are compared with the disaggregated series for

the test dataset. We also calculate the root mean squared error, and normalized mean squared error1. Mean squared
error is sensitive to outliers, and climate zones vary in the volatility of their rainfall. We normalize mean squared
error in order to better facilitate the comparison of error between climate zones. The results are shown in Table 3.
For comparison with existing methods for daily-to-hourly disaggregation, we also present the same statistics for the
partially re-aggregated series in Table 4.

The hourly model presented by Bhattacharyya and Saha (2022) has a relative error in mean rainfall of 7.516%
and a relative error in variance of 36.2%. In comparison, our LSTM model demonstrates significantly improved
performance on the mean, with only a slight increase in error for the variance.

While the model generally captures the temporal patterns of rainfall, it tends to underestimate the magnitude of
extreme events, as demonstrated in Figure 4 for Brisbane. This underestimation is reflected in the measured variance
error, and arises from two main causes. The first cause is the smoothing effect of LSTM predictions (Waqas and
Humphries, 2024), as the model prioritizes long-term dependencies over sharp fluctuations. The second cause is the
scarcity of extreme rainfall instances in the training data. In the Brisbane training set, for instance, 6.13% of wet days
featured at least one instance of half-hourly precipitation exceeding 10mm (126 of 2055), with such events comprising
just 1.5% of all wet half-hours. This imbalance in the training data naturally biases the model toward more moderate
predictions, compounding the inherent smoothing tendency of the LSTM architecture.

For a more direct comparison of performance, we can consider the Markov chain Monte Carlo (MCMC) method
for hourly disaggregation presented by Ferrari et al. (2022), which also uses Canberra BoM data for evaluation.

1NMSE = MSE/Var(y)

7



Table 3: Statistical characteristics of half-hourly observed and predicted series

Location

CN BR SY ME CA Average

Mean (mm)
Observed 0.1027 0.0788 0.1015 0.0409 0.0512 0.07502
Predicted 0.1027 0.0788 0.1014 0.0409 0.0512 0.075

Variance (mm)2

Observed 0.7919 0.5060 0.4124 0.0894 0.1149 0.3829
Predicted 0.3039 0.2584 0.1831 0.0409 0.0457 0.1664
Relative error (%) 61.624 48.933 55.601 54.251 60.226 56.127

Root mean squared error (mm) 0.6899 0.567 0.5136 0.2345 0.2857 0.4581

Normalized mean squared error 0.6011 0.6353 0.6397 0.6151 0.7106 0.6404

Table 4: Statistical characteristics of re-aggregated hourly series

Location

CN BR SY ME CA Average

Mean (mm)
Observed 0.1933 0.1488 0.1980 0.0758 0.0868 0.14054
Predicted 0.1933 0.1488 0.1979 0.0758 0.0868 0.14052

Variance (mm)2

Observed 2.1752 1.5035 1.2141 0.2533 0.3128 1.0918
Predicted 1.0627 0.8632 0.6723 0.1415 0.1495 0.5778
Relative Error (%) 51.145 42.587 44.626 44.137 52.206 46.940

Root mean squared error (mm) 1.0269 0.8975 0.8195 0.3637 0.4513 0.7118

Normalized mean squared error 0.4848 0.5358 0.5532 0.5194 0.6512 0.5489

Comparing performance on Canberra specifically, our model achieved an RMSE of 0.4513, representing a 30.57%
improvement over the RMSE of 0.65 reported by Ferrari et al.. Overall, the results indicate that our model is robust
and outperforms existing methods in preserving key statistical characteristics of the observed precipitation series.

3.2. Preservation and detection of precipitation intervals

Bhattacharyya and Saha (2022) highlights preservation of the number of dry hours as a useful metric by which to
evaluate a disaggregation model. Consequently, we present the number of dry and wet periods for both half-hourly
and re-aggregated hourly measurements. A time period is dry if precipitation is less than 0.2mm. A time period is wet
if it is not dry. This cutoff is chosen because 0.2mm is the smallest amount of precipitation that can be measured by
BoM’s equipment.

Following Ferrari et al. (2022) we also evaluate the model’s timing accuracy by calculating the percentage of
correctly-detected wet periods, considering both half-hourly and hourly intervals. We allow for 0, ±1, and ±2 interval
margins of error. For example, if precipitation occurs at 10:00, predictions at 09:30, 10:00, or 10:30 are considered
correct with a ±1 half-hour tolerance. Table 5 presents these results for each location.
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Table 5: Number of wet and dry half-hours for each location

Location

CN BR SY ME CA Average

Number of dry half-hours
Observed 46026 46834 46805 46113 41895
Predicted 45580 46596 46177 46326 41303
Relative error (%) 0.967 0.508 1.341 0.462 1.413 0.939

Number of wet half-hours
Observed 3414 2846 4507 2655 2649
Predicted 3860 3084 5135 2442 3241
Relative error (%) 13.06 8.36 13.93 8.022 22.35 13.15

Number of dry hours
Observed 23859 24337 23244 24414 24539
Predicted 23720 24168 22769 24468 24128
Relative error (%) 0.583 0.694 2.044 0.221 1.675 1.043

Number of wet hours
Observed 2421 1967 3060 1890 1765
Predicted 2560 2136 3535 1836 2176
Relative error (%) 5.74 8.59 15.52 2.86 23.29 11.20

Correctly detected wet half-hours (%)
±0 half hours 65.88 60.68 70.85 55.86 68.14 64.28
±1 half hour 76.24 70.41 77.50 65.57 75.20 72.98
±2 half hours 81.40 75.79 81.34 69.87 78.75 77.43

Correctly detected wet hours (%)
±0 half hours 70.92 63.85 75.00 61.16 74.28 69.04
±1 half hour 81.58 75.29 83.40 72.49 81.42 78.87
±2 half hours 86.16 80.48 87.29 77.88 85.50 83.46
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The LSTM model has an average error of 1.04% in the total number of dry hours. This represents a 95.04%
reduction in error over the results reported by Bhattacharyya and Saha, who observed an error of 20.96%. Such a
substantial enhancement in capturing dry periods indicates that our model more faithfully reproduces the intermittent
nature of precipitation patterns than the feed-forward neural network.

The LSTM model also displays improved performance in timing accuracy. It can detect 83.46% of wet hours
within a ± 2 hour window, and 69.04% of wet hours with no error. This is a significant improvement over the MCMC
model by Ferrari et al., which detects 60% of wet hours with ± 2 hours error, and 20% of wet hours with no error.
Even at half-hourly resolution without re-aggregation, the LSTM maintains high accuracy, detecting 64.28% of wet
half-hours with no error. The improved timing accuracy suggests a better capability to capture the temporal dynamics
of precipitation events compared with the MCMC model.

3.3. Correlation and skill score

The temporal correlation between the predicted and observed series and the skill score for each location can be
seen in Table 6.

The skill score presented by Perkins et al. (2007) measures the relative similarity of two probability density
functions and is an effective metric to capture the ability of the model to simulate the distribution of precipitation over
a day.

S score =

n∑
i=1

min(pi, qi) (6)

where n represents the number of intervals per day (24 for hourly data, 48 for half-hourly data). A skill score of 1
indicates that the distributions are identical, while a skill score of 0 indicates that the distributions have no common
area between them.

Table 6: Correlation and skill score measurements

Location

CN BR SY ME CA Average

R half-hourly 0.6317 0.6125 0.6035 0.6227 0.5449 0.6031
R hourly 0.7180 0.6852 0.6723 0.6952 0.5980 0.6737
Skill score half-hourly 0.7127 0.7024 0.6759 0.6932 0.7401 0.7049
Skill score hourly 0.6866 0.6533 0.6255 0.6498 0.6961 0.6623

The model achieves correlations of 0.60 and 0.67 for the half-hourly and hourly series respectively. This indicates
that the model effectively captures the timing and intensity of precipitation events at fine temporal scales. It also
demonstrates high skill in reproducing the probability distribution of precipitation insities. With an average skill score
of 0.70 for half-hourly and 0.66 for hourly, the model shows a strong ability to match the observed distribution of
precipitation.

3.4. Alternative model architectures

We now consider the impact that altering the number of hidden LSTM layers and the number of LSTM units in
each layer has on the disaggregation performance of the model, using Sydney data to facilitate the comparison. We
call a model with hidden size h and l layers model (h, l) for brevity.

The base configuration (62, 2) has the second-lowest RMSE and NMSE of the tested configurations, with (124, 3)
outperforming it by a small margin. However, (62, 2) has a smaller error in variance and more faithfully reproduces
the number of wet and dry half-hours. (124, 3) suffers from a further problem that is not reflected in the above results:
that of dying neurons. Due to the ReLU layer, bad initializations of the model can cause the whole network to become
a constant function. This prevents the model from learning, and is more often seen in deeper networks than shallower
ones (Lu, 2020). Consequently, it often needs to be re-initialized several times in order to produce a satisfactory result.
The phenomenon was also observed in (62, 3), albeit to a lesser extent.
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Table 7: Statistical characteristics of alternate model predictions

Number of hidden layers

1 2 3

RMSE (mm)
Hidden size 31 0.5621 0.5133 0.5079
Hidden size 62 0.5211 0.5056 0.5118
Hidden size 124 0.5436 0.5272 0.5052

Normalized MSE
Hidden size 31 0.7662 0.6388 0.6256
Hidden size 62 0.6585 0.6198 0.6353
Hidden size 124 0.7165 0.6740 0.6194

Variance error
Hidden size 31 50.02% 68.72% 63.87%
Hidden size 62 61.37% 61.83% 60.96%
Hidden size 124 49.95% 56.23% 62.07%

Dry half-hour error
Hidden size 31 1.62% 2.96% 2.17%
Hidden size 62 2.01% 1.73% 1.70%
Hidden size 124 1.08% 1.59% 1.85%
Wet half-hour error
Hidden size 31 16.84% 30.73% 22.50%
Hidden size 62 20.92% 17.95% 17.71%
Hidden size 124 11.23% 16.46% 19.21%

Note: Bold indicates the best result for each metric. Underlined indicates the second-best result.
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While deeper and wider networks like (124, 3) can achieve slightly better error rates, they come with the drawback
of potential initialization issues and less accurate reproduction of certain precipitation characteristics. This suggests
that the base configuration (62, 2) offers a good balance between performance and stability.

4. Conclusion

This paper extends prior work on machine learning approaches to precipitation disaggregation and downscaling
by presenting an LSTM model that can effectively generate half-hourly precipitation statistics from a recorded daily
total and hourly meteorological variables. We analyse our model with regard to a number of performance metrics
previously established for hourly precipitation and show that its performance is on par with existing methods while
both operating on a finer time scale and more effectively enforcing the daily total constraint. This makes our work
valuable in ensuring that precipitation can be reliably used for modelling and simulation of built environments.

There are several avenues for future research. Our present approach could be refined by incorporating additional
meteorological variables, applying the model to more locations and conducting further performance evaluations, or
investigating the performance of the model when trained on an entire climate zone instead of individual stations.
Additionally, exploring the performance of the model in low-data environments could be valuable in contexts where
extensive historical data is unavailable. These improvements would be beneficial to better understand the limitations of
the LSTM approach. Another promising direction is the investigation of foundation model performance in the context
of precipitation disaggregation. Foundation models, which are large-scale machine learning models pre-trained on vast
amounts of diverse data, have shown promising performance in transfer learning across various domains (Schneider
et al., 2024). Future research could explore how these models might capture more nuanced temporal dependencies.
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